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Macroecological laws describe variation
and diversity in microbial communities
Jacopo Grilli 1,2✉

How the coexistence of many species is maintained is a fundamental and unresolved

question in ecology. Coexistence is a puzzle because we lack a mechanistic understanding of

the variation in species presence and abundance. Whether variation in ecological commu-

nities is driven by deterministic or random processes is one of the most controversial issues

in ecology. Here, I study the variation of species presence and abundance in microbial

communities from a macroecological standpoint. I identify three macroecological laws that

quantitatively characterize the fluctuation of species abundance across communities and over

time. Using these three laws, one can predict species’ presence and absence, diversity, and

commonly studied macroecological patterns. I show that a mathematical model based on

environmental stochasticity, the stochastic logistic model, quantitatively predicts the three

macroecological laws, as well as non-stationary properties of community dynamics.
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No two ecological communities are alike, as species com-
position and abundance vary widely. Surveys of microbial
communities, mapping taxonomy from Arctic oceans to

zebras’ guts, have shown the incredible diversity of these
ecosystems.

Often, we have a detailed understanding of which environ-
mental factors affect community variability1–4 and, sometimes,
the genetic drivers determining the response to different envir-
onmental conditions5,6. This qualitative understanding of the
correlates, and potential causes, of the observed variation does not
parallel with a mechanistic understanding of its fundamental and
general properties7–9.

Recent experiments allowed to document the existence and
quantify the effect of several ecological mechanisms driving diver-
sity in vitro10–14. Sometimes, with counter-intuitive results. For
instance, many species can coexist on a single supplied resource
thanks to widespread cross-feeding13. Environmental modification
can lead to ecological suicide when one species, in the absence of
other ones, modify pH to such a degree that lead to extinction of the
whole population14. These growing body of fundamental results in
microbial ecology are made possible by the simplified nature of the
experimental communities, which typically consist of an handful of
interacting species. It is challenging to upscale the experimental
setups to match the complex spatio-temporal conditions of natural
communities, in order to characterize the processes shaping the
variation of many coexisting species.

Environmental fluctuations, competition, cross-feeding, envir-
onmental modification, demographic stochasticity, migration, and
many other ecological forces shape microbial communities over
time and space. The existence of such forces is not in doubt. Their
quantitative strength and relative relevance in determining com-
position and variation in natural communities are unknown. It is in
fact extremely challenging to disentangle the effect of multiple
mechanisms in communities with thousands of species interacting.
In such complex communities, mechanisms and microscopic forces
manifest in emergent, macroscopic, properties. Macroecology, the
study of ecological communities through patterns of abundance,
diversity, and distribution15, is therefore a promising approach to
study quantitatively variation in microbial communities16–18, and to
provide quantification of mechanisms that are shaping them.

The most studied pattern in (macro)ecology is the species
abundance distribution (SAD)19,20, which is defined as the frac-
tion of species with a given abundance. Multiple functional
forms, and consequently multiple mechanisms, have been pro-
posed to describe the empirical SAD in microbial communities17.
While SADs are highly studied and characterized, it is often
neglected that three distinct and independent sources of variation
influence their shape: sampling noise, fluctuation of abundances
of individual species, and variability in abundance across spe-
cies. This work disentangles these sources of variation in three
macroecological laws.

Here, I show that three macroecological laws describe the
fluctuations of abundance and diversity. These three ecological
laws hold across biomes and for both cross-sectional and tem-
poral data, and are fundamental, as they suffice to predict,
without fitting any additional parameters, the scaling of diversity
and other commonly studied macroecological patterns, such as
the SAD. These laws allow to generate in silico ecological com-
munities, providing a statistically sophisticated ground truth, that
allows to test ecological theories, models, and mechanisms.

Macroecological patterns are the bridges from uncharacterized
variation to ecological processes and mechanisms. I show that the
stochastic logistic growth model, which is based on environ-
mental stochasticity, reproduces the three macroecological laws,
as well as dynamic patterns in temporal data. Both data and
model show that, at the taxonomic resolution commonly used,

competitive exclusion is rare and variation of species presence
and abundance is mostly due to environmental fluctuations.

Results
Abundance fluctuations are gamma distributed. The first pat-
tern I consider is the abundance fluctuation distribution (AFD),
which is defined as the distribution of abundances of a species
across communities (Fig. 1a).

This quantity is strongly influenced by sampling errors,
especially when, because of fluctuations, a species becomes rare.
For the most abundant species, these sampling errors can be
neglected and Fig. 1b shows that the Gamma distribution, with
species’ dependent parameters, well describes the AFD across
biomes for the most occurrent species (Supplementary Fig. 1). In
the Methods section, I introduce a method, based on the moment
generating function, to remove sampling effects and infer the
original distribution of abundance fluctuations. Supplementary
Fig. 2 shows that the abundance fluctuations of rarer species are
also Gamma distributed, independently of their presence and
typical abundance. The probability that species i has abundance x
in a given community is therefore

ρiðxÞ ¼
1

ΓðβiÞ
βi
�xi

� �βi

xβi�1 exp �βi
x
�xi

� �
: ð1Þ

The two parameters �xi and βi fully characterize the AFD of
each species. The parameter βi is the squared inverse coefficient of
variation: βi ¼ �x2i =σ

2
xi
, where �xi is the average abundance of

species i and σxi is its standard deviation.
This law was tested against two alternative distributions

(Lognormal in Supplementary Fig. 5 and zero-inflated Gamma
in Supplementary Fig. 6), obtaining a superior performance of the
Gamma distribution in all the data sets considered in this study.
Whichever ecological processes are at the origin of species’
abundance variation, they manifest regularly and consistently in a
Gamma AFD.

Abundance predicts presence. The probability that a Gamma-
distributed variable is exactly equal to zero vanishes. A direct
consequence of the first macroecological law (a Gamma AFD) is
that all instances in which a species is absent should be imputed
to sampling error. This surprising prediction is directly tested in
two ways. If the absence is caused by sampling error, one can
predict the occupancy of a species, defined as the fraction of
communities where it is present, from the AFD. Assuming a
Gamma AFD, the expected occupancy of species i is given by (see
Methods and Supplementary Note 4 for the full derivation)

hoii ¼ 1� 1
T

XT
s¼1

1þ �xiNs

βi

� ��βi

; ð2Þ

where Ns is the total number of reads in sample s and T is the
total number of samples. Since absence is predicted to be due to
sampling errors, as sampling error reduces (i.e., when the total
number of reads Ns increases) occupancy is predicted to tend to 1.
Figure 2 shows that Eq. (2) predicts the occupancy from the first
two moments of species abundance fluctuations (Supplementary
Fig. 3). Note that the fact that a Gamma AFD reproduces this
pattern is also an indirect test of the hypothesis that the AFD is
Gamma. Supplementary Fig. 4 shows that a Lognormal AFD fails
in reproducing the observed occupancy.

Further evidence to the claim that most instances where a
species is absent are due to sampling error is provided using
Bayesian model selection. A Gamma AFD is compared with a
zero-inflated Gamma distribution, which explicitly includes
species absence. The Gamma AFD is statistically superior to the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18529-y

2 NATURE COMMUNICATIONS |         (2020) 11:4743 | https://doi.org/10.1038/s41467-020-18529-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


zero-inflated Gamma distribution (see Methods and Supplemen-
tary Fig. 6).

This result strongly suggests that, at the taxonomic resolution
used in this study, competitive exclusion is absent or, at least,
statistically irrelevant. Importantly, this result clarifies the relation
between abundance and occupancy21, which has been reported in
multiple microbial systems18,22,23 but has never been quantita-
tively characterized and explained.

Taylor’s Law. The mean and variance of abundance fluctuations
are sufficient to characterize the full distribution of abundances of
species across communities, as Eq. (1) depends only on the two
moments �xi and σxi . The second macroecological law describes
the relation between mean and variance of species abundance,
which is often referred to as Taylor’s Law24. Taylor’s law has been
reported in many contexts, ranging from ecology25,26 to phy-
siology27–29, from economics30 to geomorphology31. Figure 1c
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community. b The Abundance Fluctuation Distribution (AFD) describes the distribution of abundances of a species across communities. I consider cross-
sectional data from 9 data sets (colored symbols, see Methods). A Gamma distribution (solid black line) closely matches the AFD, here reported for the
most abundant species (see Methods). The Gamma distribution describes the AFD of both abundant and rare species (Supplementary Note 1 and
Supplementary Fig. 2). c The mean and variance of the abundance distribution are not independent across species, a relationship known as Taylor's Law.
The variance is, in fact, proportional to the square of the mean (solid line), implying that the coefficient of variation of the abundance fluctuations is
constant across species (Supplementary Fig. 7). Taylor's Law (together with a Gamma AFD) implies that a single parameter per species (the average
abundance) recapitulates the distribution of fluctuations. d The Mean Abundance Distribution (MAD), defined as the distribution of mean abundance
(obtained by averaging over communities) across species, is Lognormally distributed (black line, Supplementary Note 7).
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Fig. 2 The AFD predicts the presence/absence of species from fluctuations of abundance. a Relationship between fluctuation in abundance and the
absence of species. The fluctuations of species abundances across communities (AFD) are Gamma distributed (Fig. 1), which implies that species are
absent only because of finite sampling. b Tests the prediction, by comparing the occupancy of species (the fraction of communities where a species is
presence) in different biomes with what expected from independent sampling from Gamma distributed relative abundances (Supplementary Note 4 and
Supplementary Fig. 3).
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shows that Taylor’s law holds for the composition of microbial
communities. In particular, the variance scale quadratically with
the mean, implying that the coefficient of variation of the
abundance fluctuations is constant (with respect to mean abun-
dance, see Methods and Supplementary Note 5). Thanks to
Taylor’s Law, one needs therefore only one, instead of two,
parameters per species—their average abundance—to describe
species abundance fluctuations. In particular, it implies that βi=
β for all species.

It is known that a Taylor’s law with exponent 2 can arise as a
consequence of sampling biases32,33. Average and variance can,
in principle, be calculated over independent realizations of a
process, over time, or over both. If the duration of observations is
too large compared to the number of independent replicates, the
empirically measured value of Taylor’s exponent converges to 2
independently of the true exponent32. Since the relationship
between variance and mean was considered over the variation
across communities, without any time dimension, this caveat
does not apply to the results of Fig. 1. Another bias emerges
when data are sampled in blocks from the same skewed
distributions. Also in this case a Taylor’s law with exponent 2
emerges between sample mean and standard deviation33. The
existence of a large variation (of several orders of magnitudes) of
the sample average abundance suggests that the observed
Taylor’s law reflects a true scaling of mean and variance between
distribution, rather than a sampling effect. This is confirmed by
the replicability of the average abundance: species’ average
abundance strongly correlates in similar biomes across data sets
(Supplementary Fig. 8). Both these important caveats, therefore,
do not apply to the analysis presented above, suggesting that the
exponent 2 reported in Fig. 1 corresponds to an actual property
of the data.

Average abundances are lognormally distributed. Since Taylor’s
law holds, the average abundance alone characterizes the distribu-
tion of abundance fluctuations of each species. Supplementary Fig. 8
shows that the average species abundances have a reproducible
dependence on the biome, implying that its variation across species
and biomes carries important biological information.

The mean abundance distribution (MAD) describes how the
average abundance is distributed across species. Figure 1d shows
that the MAD is Lognormally distributed for all the data sets
considered in this work (Supplementary Figs. 9 and 10): if a
species is picked at random, the probabily of observing an average
abundance �x is

pð�xÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
�x
exp �ðlog �x � μÞ2

2σ2

� �
: ð3Þ

The parameter σ characterizes the variability of the logarithm
of the mean abundance across species. Since in a finite number of
samples rare species are likely to be never sampled, the empirical
MAD displays a lower cutoff which is determined by sampling. In
fact, if a species is rare enough (i.e., if �xi, where c is a cutoff
determined by the number of samples and the total number of
reads in each sample), it becomes extremely unlikely to observe it.
If the “true” distribution of �xis is described by the probability
distribution function pð�xÞ, one expects to observe only the right
part of the distribution, i.e.,

pempð�xÞ ¼
θð�x � cÞpð�xÞR
dzθðz� cÞpðzÞ ; ð4Þ

where θ(z − c) is 1 if z > c and zero otherwise (see Supplementary
Note 7 for details on parameter estimate). Note that, in reality, c is
not a hard cut-off. In this context, it refers to the minimal average

abundance above which the error on the mean abundance due to
sampling is negligible.

Equation (4) allows to estimate the total diversity, under the
assumption that Eq. (3) holds, i.e., that the MAD is lognormal
also for the rarer species. I find that the total diversity is typically
at least twice as large as the recorded one (Supplementart
Table 2). A Lognormal MAD also rules out Neutral Theory34,35 as
an explanation of community variability. Neutral Theory in fact
assumes species’ symmetry35—the outcome is statistically invar-
iant when exchanging species identities—which implies that
average abundances (averaged over time or across replicates) are
species independent. Averaging over an infinite number of
replicates one would find that, in Neutral models, the averages
abundances of different species converge to the same value, and
the MAD to a Delta distribution. For a finite number of
independent samples, one would observe a Gaussian MAD
(Supplementary Note 11), which can be easily rejected from
the data.

Prediction of other macroecological patterns. The three laws
presented so far—the Gamma AFD, Taylor’s Law with exponent 2
and the Lognormal MAD—can be fully parameterized for each
biome knowing the first two moments μ and σ (Eq. (3)) of the
MAD (how the mean relative abundance differs across species), the
total diversity and the coefficient of variation of the AFD (what is
the average variation of species’ abundance across communities, i.e.,
the intercept of Fig. 1c), which is related to β (Eq. (1)).

Knowing the three laws and their parameters, and assuming
that species abundance fluctuations are independent, one can
generate synthetic communities for arbitrary levels of sampling.
Here I contrast these synthetic communities to the empirical
ones, by comparing their statistical properties. In particular, I
focus on commonly studied macroecological patterns (e.g., the
SAD). The goal of this comparison is twofold. On the one hand, it
allows to testing the realism of these synthetic communities,
serving as a further indirect test of the correctness and the
statistical relevance of the three macroecological laws. In fact, a
strong mismatch between the properties of synthetic commu-
nities and the empirical ones would imply the existence of other
strong statistical constraints that go beyond the three laws. For
instance, if species abundance fluctuations were strongly
correlated, one would expect to find a significant mismatch
between observed SAD and the ones predicted assuming
independence. On the other hand, it is also a test for the
relevance of other macroecological patterns, given the knowledge
of the three macroecological laws. For instance, one might
wonder whether the shape of the SAD add information—that is
not already encoded in the three macroecological laws—on the
statistical properties of the community structure.

Four macroecological patters are considered: the relation
between diversity and the number of sequences sampled36

(which parallels the Species-Area relationship)16, the SAD19,20,
the occupancy distribution37 (the probability that a species is
present in a given fraction of the samples) and the abundance-
occupancy relationship21 (see Supplementary Note 8 for other
quantities). It is important to note that these patterns are all
affected by sampling, species abundance fluctuations, and
species differences. Knowing the three macroecological laws
allows to analytically calculate a prediction for these quantities
(see Methods and Supplementary Note 8 for the analytical
derivation). Figure 3 shows that the predictions of these
macroecological patterns match the data accurately. The three
laws do not only hold in general, being valid across biomes:
they are also fundamental, as they suffice to predict other
macroecological quantities.
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Macroecological laws hold for temporal data. A question that
naturally arises is whether the success of the AFD, together with
the other two macroecological laws, in predicting the scaling of
abundance and diversity translates into an ecological prediction
on the nature of stochasticity. Which ecological process is
responsible for the fluctuations of species abundance across
communities? The ability of a Gamma AFD in predicting occu-
pancy from its first two central moments, as illustrated in Fig. 2,
rules out mechanisms that explain variation as a consequence of
alternative stable states driven by biotic or abiotic interactions.
These mechanisms would correspond in fact to more complicated
relationships between abundance and occupancy (Supplementary
Note 11), that cannot be described by a Gamma AFD. An
alternative is that the variation in abundances is the effect of a
mechanism with some intrinsic variability. This variability could

be due to heterogeneity (e.g., two communities are different
because the environmental conditions were, are and will be dif-
ferent) or stochasticity (e.g., two communities are different
because the environmental conditions are independently fluctu-
ating over time). I tested these two scenarios using longitudinal
(temporal) data (see Methods). In the former scenario, the three
macroecological laws should differ between cross-sectional (i.e.,
across communities) and longitudinal (i.e., across time) studies.
While in the latter case, they should also hold when a community
is followed over time. Figure 4 shows that the three macro-
ecological laws also hold for longitudinal data, suggesting that
fluctuations in abundance are mainly due to temporal stochasti-
city (Supplementary Note 9). This result does not contradict
the existence of replicable differences between communities (e.g.,
host genetics correlates with community composition of gut
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microbiome)38: most of the variation, and not all of it, is due to
temporal stochasticity.

The stochastic logistic model (SLM) reproduces macro-
ecological laws. The observation that variation in abundances is
mostly due to stochasticity over time, together with the three
macroecological laws, strongly constrains the validity of models

aiming at explaining and reproducing community dynamics. It is
natural to interpret stochasticity as due to environmental fluc-
tuations (an alternative would be demographic stochasticity,
which is ruled out in Methods).

I considered the SLM to describe species population dynamics.
The SLM assumes that species populations grow logistically, with
a time-dependent growth rate, which fluctuates at a faster rate
than the average growth rate (i.e., the timescale associated with
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Fig. 4 Macroecological laws hold for temporal data. a–c The same laws that describe presence and abundance variation across the community (black
lines) also hold for time data (colored points, see Methods and Supplementary Note 9). d–f The stochastic logistic model (SLM) reproduces the empirically
observed AFD, Taylor's law and MAD, respectively. Gray circles are the results obtained with the SLM, and the black crosses the ones obtained using SLM
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growth-rate fluctuations is much shorter than the typical
timescale of population dynamics). If xi is the abundance of
species i

dxi
dt

¼ xi
τi

1� xi
Ki

� �
þ

ffiffiffiffi
σ i
τi

r
xiξiðtÞ : ð5Þ

where the noise ξ(t) is assumed to have time correlation
hξiðtÞξjðt0Þi ¼ δijδðt � t0Þ. Taylor’s Law and the observed Log-
normal MAD constraints the parameters value. Taylor’s Law
requires σi= σ (independently of i, Supplementary Note 12),
while the Lognormal MAD implies that the Kis are lognormally
distributed across species. Figure 4 shows that the SLM
reproduces the three macroecological laws at stationarity. In
particular it predicts a Gamma AFD39 as observed in the data.

One important assumption of the SLM is that environmental
noise is white, with autocorrelation time which is much shorter
than the population dynamics timescale τ. It is known that
environmental fluctuations are typically non-white40,41. Supple-
mentary Note 13 extends the model to include non-white
environmental noise, with finite autocorrelation time τϵ. Surpris-
ingly, simulations and analytical calculations (see Supplementary
Note 13, Supplementary Fig. 25 and Methods) show that the
AFD is almost unaffected even when the noise correlation
timescale and the population dynamics timescale overlap (i.e.,
when τϵ/τ ≈ 1).

The SLM assumes that species are not interacting and
their populations change independently over time. As it is
known that species interact, it is natural to ask under what
conditions this is a useful approximation. It is known that the
interacting models (e.g., the Lotka-Volterra system of equa-
tions) can reduce effectively to the SLM, when the number of
species is large enough. Intuitively, the effect of all the other
populations on a focal one can be effectively approximated as
random noise when many species interact in a perturbed
environment. It is possible to rigorously derive the SLM as an
effective equation using tools from the statistical physics of
disordered systems42.

A correct model describing population dynamics should not
only reproduce the stationary distribution but also time-
dependent quantities. The dynamics of the system can be fully
characterized by the transition probability, which is defined as
the probability of observing an abundance at time t+ Δt,
conditioned to the abundance at time t. Figure 4 shows the
first two central moments of this distribution (see Methods), for
Δt= 1 day.

An important observation is that one can detect a signature of
dynamics: the longitudinal data, collected with a time-spacing of
1 day, display a non-trivial time correlation (with a typical
relaxation time-scale equal to 19 hours, see Methods). This
timescale might appear much longer than the typical duplication
time of bacteria in standard experimental conditions. In drawing
this comparison, it should however be considered that in nature
resource are more limited and the environment more stressful
than typical lab conditions43. Measuring doubling times in the
wild is challenging, but existing estimates are consistent with the
inferred relaxation timescale of about 19 h. For instance Gibson
et al.44, by measuring the rate of mutation accumulations,
estimate that E. coli doubles every 15 h in the wild as opposed to
20 min in its most favorable lab condition. Across species,
doubling times are 2-fold to 50-fold longer in the wild than in the
laboratory, consistently with our finding. Figure 4 shows the SLM
reproduces also the dynamics patterns, giving further validation
to the hypothesis that environmental fluctuations drive the
variability observed in the data.

Discussion
Here, I considered longitudinal and cross-sectional data of
microbial communities from many different environments and
studied their patterns of presence, abundance, and diversity with
a macroecological perspective. Three general and fundamental
laws emerge. These laws characterize quantitatively the abun-
dance variability of individual species across space and time and
the difference in typical abundance across species.

From a methodological standpoint, the characterization of
these laws allows to formulate a data-driven null model that can
be used to generate communities in silico. By exploring the sta-
tistical properties of synthetic communities, one can show that
they match the empirical ones. This comparison is not just a
statistical exercise and it has deep consequences on how these
data should be used and interpreted. For instance, it is shown that
abundance fluctuations and sampling effects alone can predict
presence, implying that most of the instances where species are
absent are due to sampling errors. These results raise concerns on
the interpretation of presence–absence data, for instance used to
define core microbiomes45 and of co-occurrence data46. More
interestingly, these observations have deep implications on our
understanding of the mechanisms shaping the composition of
microbial communities. As true absence of species appears to be
quite rare, limiting similarity and competitive exclusion must
have a small role in determining inter-community variability.

Differences between in silico and in vivo communities also
emerge and provide important insight on mechanisms. For
instance, non-trivial spurious correlations between species
abundance fluctuations emerge in in silico communities, mainly
because of finite sampling (Supplementary Fig. 26 and Supple-
mentary Note 14). The majority of species pairs have correlations
compatible with what predicted by the null model, while only a
small group is significantly correlated. The relative small, yet
significant, degree of the deviation implies that microbial com-
munities are in a weakly interacting (or weakly correlated)
regime, where interactions are sparse and correlations are weak.

These results are contingent on the very definition of species
and the taxonomic resolution used in this work (97% OTUs,
Supplementary Note 1). While competition appears not to be a
driver of correlated variation at this taxonomic resolution, it very
likely becomes an important contributor at finer resolutions. On
the other hand, the trophic structure of functional groups47 might
be masked at the current resolution, and it might be revealed as
variation is studied at a coarser taxonomic (or functional) scale.
Whether the macroecological laws differ when the taxonomic
resolution is changed is an open question. The possible depen-
dence of macroecological patterns on the taxonomic scale is not a
limitation, but is rather an asset. It would in fact correspond to a
shift in importance between ecological processes that shape var-
iation at different taxonomic scales.

One of the early critiques to macroecology is the lack of a direct
connection between ecological mechanisms and patterns. For
instance, the shape of the SAD is quite insensitive to the under-
lying variation of ecological forces48,49. This paper contributes in
filling the gap between mechanistic models and macroscopic
patterns, by disentangling different sources of variation of species
abundance. We showed that the SLM describes both stationary
patterns in static (cross-sectional) data and abundance dynamics
in temporal (longitudinal) data. The model points to environ-
mental variability as the main source of variation of presence and
abundance in microbial communities.

These results parallel the ones found in non-microbial eco-
systems, in tropical forests in particular. In those ecosystems,
neutral theory has played an important role in predicting sta-
tic34,50,51 and dynamic52 patterns of diversity. While the success
of neutral theory in predicting static patterns, and the SAD, in
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particular, is well accepted, it has been increasingly recognized
that neutral models fail in explaining temporal abundance
dynamics53,54. Adding environmental noise to neutral models55–57,
but still keeping a species-symmetric assumption35, allows to better
explain the tempo and properties of abundance dynamics.

One important difference between the models proposed to
explain the dynamics in tropical forests and the SLM para-
meterized as in this work is that the former assume species-
symmetry: the microscopic rates of birth, death, migration fluc-
tuate over time with equal statistical properties across species.
The latter does not. Interestingly, in this work, the motivation for
refuting species-symmetric models comes mainly from static data,
which are typically considered to be well explained by neutral,
species-symmetric, models. In fact, most of the analysis and
predictions of Neutral Theory focus on SADs. Also in the context
of microbial communities, previous works have focused on the
shape of the SADs17,58. As explained in the introduction, the
variation in the SADs come from two fundamentally different
sources: the variation of abundance of each species across com-
munities and/or time and the variation of typical abundance
across species. By disentangling the regularities in these sources of
variation into AFD and MAD, it is possible to show that species-
symmetric models cannot explain the large variation in MAD.

Comparing the patterns and the processes between tropical
forests and microbial communities is extremely tempting: they
are both large, diverse, communities. Whether the regularities of
SADs are the byproduct of regularities in the AFDs and MAD
also in tropical forests is an open and interesting question. The
fact that environmental fluctuations seem to be responsible of the
variation in both is also suggestive. When drawing comparison it
is important however to confront the issue of scales. More than
3 × 1013 bacterial cells live in a single adult human colon59, which
is about 10 times the number of trees on our whole planet60. A
year of temporal data is estimated to correspond to about 500
generations for bacteria44, which would correspond to 25,000
years of data assuming 50 years generation time for trees61. The
spatial and temporal scale of observation has in fact fundamental
effect on the processes that appear to determine community
variation62, with demographic stochasticity becoming more
important at small spatio-temporal scales and environmental
effects more relevant at larger scales.

In microbial communities, the SLM predicts the Gamma AFD
and properties of temporal dynamics. Importantly, Taylor’s law
and the Lognormal MAD are not predicted by the SLM, but they
strongly constrain the parameterization of the SLM. For Taylor’s
law, this result parallels the observation that any exponent can be
obtained by any family of distribution, provided some mild
conditions63. As shown in the Methods section in the case of a
neutral model with species-dependent migration rate, Taylor’s
law constrains parameters variability across species.

The mechanism at the origin of species average abundance and
of the robust emergence of the Lognormal MAD remains instead
as an open question. The literature on Lognormal SAD is
vast64,65. It is known to perform well as a statistical model in
describing the empirical shape of SAD in tropical forests as an
alternative to neutral theory predictions66. It also describes rea-
sonably well the empirical shape of SAD in microbial commu-
nities17. This success in describing the empirical shape of SADs
does not parallel with a mechanistic understanding of its emer-
gence in terms of fundamental ecological processes67. In this
context, our results show that the Lognormality of the SAD in
microbial community is only apparent and results as a con-
sequence of the Lognormality of the MAD. This observation has
important mechanistic consequences: the origin of Lognormality
has to be found in the processes that set species typical abundance
and not in the processes determining abundance variability and

fluctuations. One interesting direction would be to explore the
scaling of average abundances with other physiological para-
meters (e.g., typical cell size).

The main factor responsible of species abundance fluctuations
appears to be environmental stochasticity. It is important to stress
that both biotic and abiotic factors contribute to environmental
noise. These fluctuations effectively capture multiple biological
processes. For instance, the concentration of resources available
to a given species constantly fluctuate because the abundance of
competitors and cross-feeders fluctuate as well. In large, diverse,
communities these fluctuation sum up and result effectively in
fast environmental noise. These considerations can be more
formally derived in the context of large interacting dynamical
systems, where an effective description of single-species dynamics
can be obtained42,68.

The combination of several complex processes determines the
ultimate composition of microbial communities. Their com-
plexity inevitably leads to the emergence of robust and predictive
laws. The characterization of such laws, at multiple spatial,
temporal, and taxonomic scale, will help in disentangling and
quantifying the ecological forces responsible of the stunning
(microbial) biodiversity of our planet.

Methods
Data. All the data sets analyzed in this work have been previously published and
were obtained from EBI Metagenomics69. Previous publications (Supplementart
Table 1) report the original experiments and corresponding analysis. In order to
test the robustness of the macroecological laws and the modeling framework
presented in this work, we considered 7 data sets that differ not only for the biome
considered, but also for the sequencing techniques and the pipeline used to process
the data. Data sets were selected to represent a wide set of biomes. We considered
only data sets with at least 50 samples with more than 104 reads. No data set was
excluded a-posteriori.

Sampling and compositional data. In order to study how (relative) abundance
varies across communities and species, one needs to remove the effect of sampling
noise, as it is not a biologically informative source of variation. By explicitly
modeling sampling (Supplementary Note 2), one finds that the probability of
observing n reads of species i in a sample with N total number of reads, is given by

PiðnjNÞ ¼
Z 1

0
dx ρiðxÞ

n

N

� �
xnð1� xÞN�n ; ð6Þ

where ρi(x) is the AFD, i.e., the probability (over communities or times) that the
relative abundance of i is equal to x. Note that this equation does not assume
anything about independence across species or communities. It only assumes the
sampling process is carried independently across communities.

Since the random variable xi, whose distribution is ρi(x), is a relative abundance,
one has that ∑ixi= 1 (i.e., the data are compositional70). As discussed in
Supplementary Note 2, given the range of variation of the empirical relative
abundances, one can substitute Eq. (6) with

PiðnjNÞ ¼
Z 1

0
dx ρiðxÞ

ðxNÞn
n!

e�xN ; ð7Þ

and the condition
P

ixi= 1 to
P

i�xi ¼ 1, where �xi ¼
R1
0 dx ρiðxÞx is the mean

value of xi. Under this assumption, one can also take the limits of the integration
from 0 to ∞, instead of considering them from 0 to 1, as the contribution of the
integrand from 1 to ∞ is negligible.

Note that, because of sampling, the average of a function f(x) over the pdf ρ(x)
differs in general from the average of f(n/N) over P(n∣N)Z 1

0
dx ρðxÞf ðxÞ≠

XN
n¼0

PðnjNÞf n
N

� �
¼
Z 1

0
dx ρðxÞ

XN
n¼0

f
n
N

� � ðxNÞn
n!

e�xN ; ð8Þ

and the inequality becomes equality only if f(x) is linear. The important difference
between the right- and the left-hand side is often neglected in the literature. In fact,
the right-hand side is a good approximation of the left-hand size only in the limit
xN≫ 1, which is far from being realized in the data for most of the species.
Supplementary Note 2 introduces a method to reconstruct the moments of ρ(x)
from the moments of P(n∣N). More generally, I show that it is possible to infer the
moment generating function of ρ(x) from the data, which allow to reconstruct the
shape of the empirical ρ(x).

Excluding competitive exclusion. A Gamma-distributed AFD implies that all the
species present in a community of a biome are present in all the communities from
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that biome. Therefore, when a species is not observed is because it is undetected
due to sampling errors. I test this claim in two different ways. First, it is shown that
one can in fact predict the occupancy of a species from its abundance fluctuations.
Secondly, I show that a model without true absences is statistically more supported
than a model where species are allowed to be absent.

The first way to test this hypothesis is to directly test its immediate prediction: if
the absence is a consequence of sampling, one should be able to predict occupancy
of a species (the probability that a species is present) simply from its average and
variance of abundance (together with the total number of reads of each sample). In
particular, assuming a Gamma AFD, the occupancy of species i is given by

hoii ¼ 1� 1
T

X
s

Pð0jNsÞ ¼ 1� 1
T

XT
s¼1

1þ �xiNs

βi

� ��βi

; ð9Þ

where Ns is the total number of reads in sample s, T is the total number of samples,
and βi ¼ �x2i =σ

2
xi
. As shown in Fig. 2 and in Supplementary Fig. 3, this prediction

well reproduces the observed occupancy across species. The prediction of Eq. (12)
also matches the occupancy of temporal (longitudinal) data Supplementary Fig. 20.

The second, more rigorous, way to test the hypothesis that (most) species are
always present is to use model selection. In this context we want to compare two
(or more) models that aim at describing the observed number of reads of each
species starting from alternative hypothesis. In particular I compare a purely
Gamma AFD with a zero-inflated Gamma, which reads

ϱiðxjϑi; βi; �xiÞ ¼ ϑiδðxÞ þ ð1� ϑiÞ
1

ΓðβiÞ
βi
�xi

� �βi

xβi�1 exp �βi
x
�xi

� �
; ð10Þ

where ϑi is the probability that a species is truly absent in a community and δ( ⋅ ) is
the Dirac delta distribution. Our goal is to test whether the ϑis are significantly
different from zero. Since the two models are nested, one can compare the
maximum likelihood estimator in the case ϑi = 0 with the (maximum) likelihood
marginalized over ϑ (which has prior μ(ϑ)). Given the number of reads nsi of species
i in community s, with Ns total number of reads, one can compute the ratio
(Supplementary Note 4)

‘i ¼
max�x;β

Q
s

R
dxϱiðxj0; β; �xÞ ðxNsÞn

s
i

nsi !
e�xNs

R
dϑ μðϑÞ max�x;β

Q
s

R
dxϱiðxjϑ; β; �xÞ ðxNsÞn

s
i

nsi !
e�xNs

� � ; ð11Þ

where μ(ϑ) is a prior over ϑ. If ℓi > 1, the model with ϑi= 0 is more strongly
supported than the model with ϑ ≠ 0. Under Beta prior with parameters 0.25 and 8,
one obtains that ℓi > 1 in 98.8% of the cases (averaged across data sets, ranging from
94.4 to 99.7%) and ℓi > 100 in 97.5% cases (ranging from 92.8 to 99.2%). See
Supplementary Note 4 for a more detailed description of the methodology and
Supplementary Fig. 6 for results obtained with other priors.

Prediction of macroecological patterns. Given laws #1, #2, and #3, the prob-
ability to observe n reads of a randomly chosen species in a sample with N total
reads is

PðnjNÞ ¼
Z 1

�1
dη

Γðβþ nÞ
n!ΓðβÞ

eηN
βþ eηN

� �n β

βþ eηN

� �β exp � ðη�μÞ2
2σ2

� �
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p ; ð12Þ

where η ¼ log ð�xÞ. All the properties of species are fully specified by its mean
abundance �x ¼ eη . The probability of observing n reads of species with average
abundance �x in a sample with N total number of reads is therefore

PðnjN; �xÞ ¼ Γðβþ nÞ
n!ΓðβÞ

�xN
βþ �xN

� �n β

βþ �xN

� �β

: ð13Þ

The predictions for the patterns shown in Fig. 3 are reported here. The full
derivation of this and other patterns is presented in Supplementary Note 8.

The total number of observed species in a sample with N total number of reads
can be easily calculated using Eq. (12). The probability of not observing a species is
simply P(0∣N). The expected number of distinct species 〈s(N)〉 in a sample with N
reads is therefore

hsðNÞi ¼ stot 1� Pð0jNÞð Þ ¼ stot 1�
Z 1

�1
dη

exp � ðη�μÞ2
2σ2

� �
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p β

βþ eηN

� �β
0
@

1
A ;

ð14Þ
where stot is the total number of species in the biome (including unobserved ones,
see Supplementary Note 7). Note that stot is (substantially) larger than sobs, the
number of different species observed in the union of all the communities, which
can instead be written as

hsobsi ¼ stot 1�
Z 1

�1
dη

exp � ðη�μÞ2
2σ2

� �
ffiffiffiffiffiffiffiffiffiffi
2πσ2
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 !β
0
@

1
A : ð15Þ

Figure 3a shows that the prediction of Eq. (14) correctly matches the data
(Supplementary Fig. 13).

The SAD, one of the most studied patterns in ecology and directly related to the
Relative Species Abundance35, is defined as the fraction of species with a given
abundance. According to our model, the expected SAD is given by

hΦnðNÞi :¼ hsnðNÞi
hsðNÞi ¼ PðnjNÞ

1� Pð0;NÞ ¼
R1
�1 dη ΓðβþnÞ

n!ΓðβÞ
eηN

βþeηN

� �n
β

βþeηN

� �β exp �ðη�μÞ2
2σ2

� �ffiffiffiffiffiffiffi
2πσ2

p

1� R1�1 dη β
βþeηN

� �β exp �ðη�μÞ2
2σ2

� �ffiffiffiffiffiffiffi
2πσ2

p
; ð16Þ

where 〈sn(N)〉 is the number of species with n reads in a sample with N total
number of reads. The cumulative SAD is defined as

hΦ>
n ðNÞi :¼

X1
m¼n

hΦmðNÞi ¼
R R1

�1 I eηN
βþeηN

ðn; βÞ exp �ðη�μÞ2
2σ2

� �ffiffiffiffiffiffiffi
2πσ2

p

1� R1�1 η β
βþeηN

� �β exp �ðη�μÞ2
2σ2

� �ffiffiffiffiffiffiffi
2πσ2

p
; ð17Þ

where Ip(n, β) is the regularized incomplete Beta function. Figure 3b shows that the
Eq. (17) captures the empirical cumulative SAD (Supplementary Fig. 17).

The occupancy probability is defined as the probability that a species is present
in a given fraction of communities. This quantity has been extensively studied in a
variety of contexts (from genomics71 to Lego sets and texts72) and has been more
recently considered in microbial ecology37. The three macroecological laws predict
(see derivation in Supplementary Note 8)

pobsðoÞ ¼
R1
�1 dη

PT
t¼1 δ o� 1þ 1

T

PT
s¼1

β
βþeηNs

� �β� �
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� �β� � ;

ð18Þ
where δ( ⋅ ) is a Dirac delta function. Figure 3c compares the prediction of Eq. (18)
with the data (Supplementary Fig. 15).

Occupancy (the fraction of communities where a species is found) and
abundance are not independent properties, and their relative dependence is often
referred to as occupancy-abundance relationship21 Given an average (relative)
abundance �x ¼ expðηÞ, the expected occurrence is

hoiη ¼ 1� 1
T

XT
s¼1

Pð0jNs; �xÞ ¼ 1� 1
T

XT
s¼1

β

βþ �xNs

� �β

; ð19Þ

Figure 3d shows the comparison between data and predictions (Supplementary
Fig. 16). These predictions are also tested for temporal (longitudinal) data in
Supplementary Figs. 22–24.

Transition probabilities in longitudinal data. For longitudinal data, in addition to
the stationary AFD, one can study the probability ρiðx0; t þ Δtjx; tÞ that a species i
has abundance x0 at time t+ Δt conditioned on having abundance x at time t.
Instead of focusing on the full distribution, we study its first two (conditional)
central moments, i.e. the average and variance of the abundance at t+ Δt condi-
tioned to abundance x at time t. In the analysis of the data stationarity is assumed
(the distribution ρiðx0; t þ Δtjx; tÞ depends on Δt but not on t). I also assume that
the dynamics of different species are governed by similar equations that only differ
in their parameters. One would like therefore to average over species, by properly
rescaling their abundances. The average over species is potentially problematic, as it
could add a spurious effect to the conditional averages. For instance, only species
with larger fluctuations would appear for extreme values of the initial abundance.
In order to avoid these problems, instead of consider the actual abundance, its
cumulative probability distribution value (calculated using the empirical AFD of
each species) was used, that is referred as “quantile abundance”. This is equivalent
to rank the abundances of each species over communities and use the (relative)
ranking of each community instead of the abundance. A value equal to 0 corre-
sponds to the lowest observed abundance, and a value equal to 1 to the highest. By
definition, the quantile abundance is always uniformly distributed.

Ruling out demographic stochasticity. Demographic stochasticity can reproduce
a Gamma AFD. A birth, death, and immigration process has a Gamma as sta-
tionary distribution35. In the limit of large populations sizes, it corresponds to the
following equation35

dx
dt

¼ m� ðd � bÞx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ dÞx

p
ξðtÞ ; ð20Þ

where m is the migration rate, while b and d are the per-capita birth and death rate.
The Gaussian white noise term ξ(t) has mean zero and time-correlation
hξðtÞξðt0Þi ¼ δðt � t0Þ. The stationary distribution of this process turns out to be

ρðxÞ ¼ 1

Γ 2 m
bþd

� � bþ d
2ðd � bÞ
� ��2 m

bþd

x2
m

bþd�1 exp �2
d � b
bþ d

x

� �
: ð21Þ

The average abundance is equal to �x ¼ m=ðd � bÞ, while the variance turns out
to be σ2x ¼ ðm=2Þðbþ dÞ=ðb� dÞ2. The square of the coefficient of variation would
therefore be equal to (b + d)/(2m).
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More generally, one can assume that all the parameters are species dependent,
and the population of species i is described by

dxi
dt

¼ mi � ðdi � biÞxi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbi þ diÞxi

p
ξiðtÞ ; ð22Þ

where hξiðtÞξjðt0Þi ¼ δijδðt � t0Þ was assumed.
Taylor’s Law and the wide variation of average abundance together imply that

mi/(bi+ di) is constant while mi/(di− bi) varies across species on several orders of
magnitudes. This imposes a constraint on the variation of parameter values across
species.

For instance, one can consider the scenario where species migrate to local
communities from a common species pool (metacommunity). As abundance in the
metacommunity varies across species the migration rate is a species-dependent
quantity. Under neutrality, the per-capita birth and death rates in the local
communities are constant and independent of the identity of the species. In this
case mi depends on the species, while b and d do not. One could recover the
Lognormal MAD by imposing that mi is Lognormally distributed. On the other
hand, this model would fail in reproducing Taylor’s law with exponent 2, as it
would predict and exponent 1.

More in general, the condition imposed on the parameters corresponds to an
unnatural fine-tuned relationship between migration, birth, and death rates. Variation
of the average abundance is observed across, at least, 7 orders of magnitudes. In order
to reproduce this variation across species and Taylor’s law with exponent 2, the range
of variability of (bi− di)/(bi+ di) should be of the same order. It is unrealistic that the
relative difference between birth and death rates, which have strong and direct
connection to fundamental biological processes, vary so much across bacterial species.
It is important to underline however, that the model of Eq. (22) can, in fact, for a
proper parameterization, explain the observed variation of the data. But the choice of
parameters explaining the empirical variation require for achieving this goal requires
careful and unrealistic fine-tuning of the microscopic parameters.

Stochastic logistic model. The SLM is defined as

dxi
dt

¼ xi
τi

1� xi
Ki

� �
þ

ffiffiffiffi
σ i
τi

r
xiξiðtÞ ; ð23Þ

where ξ(t) is a Gaussian white noise term with mean zero and correlation
hξiðtÞξjðt0Þi ¼ δijδðt � t0Þ. Taylor’s Law and the observed Lognormal MAD con-
straints the parameter value. The parameters 1/τi, Ki and σi are the intrinsic growth
rate, the carrying capacity and the coefficient of variation of the growth-rate
fluctuations. Taylor’s Law requires σi= σ (independently of i). Since the average
abundance of the SLM is �xi ¼ Kið1� σ i=2Þ, if σi= σ, the average abundance and
the carrying capacity turn out to be proportional to each other. The lognormal
MAD implies therefore that the Kis are lognormally distributed. The stationary
distribution corresponding to Eq. (23) reads

ρiðxÞ ¼
1

Γð2σ�1
i � 1Þ

2
Kiσ i

� �2σ�1
i �1

exp � 2
Kiσ i

x

� �
x2σ

�1
i �2 : ð24Þ

The parameter τi does not affect stationary properties, but determines the
timescale of relaxation to the stationary distribution. For small deviation of
abundance from the average and for large times, the conditional expected
abundance behaves as

hxiðt þ ΔtÞixiðtÞ ¼ �xi þ xiðtÞ � �xið Þe�Δt
τi : ð25Þ

From the slopes of Fig. 4g one can then determine the timescales τi, which turn
out to be approximately equal to 19 h. In Fig. 4 it was assumed τi= 19 h for all
species.

Equation (23) can emerge as effective description of more complicated coupled
equations. For instance, it is possible to show that a Lotka-Volterra system of
equation with random interactions reduces to Eq. (23) (with colored noise to be
self-consistently determined)42. If the coefficient of variation of the interaction
coefficient does not increase with the number of species (e.g., if it is constant) then
the Lotka-Volterra equations can be effectively approximated with Eq. (23).

The noise term in Eq. (23) can be interpreted as corresponding to
environmental fluctuations. These fluctuations are typically known to have a
characteristic timescale and are not white40,41. Supplementary Note 13 and
Supplementary Fig. 25 show that colored noise in Eq. (23) does not affect
significantly the predictions obtained with the SLM with white noise.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the data used in this work were previously published and publicly available
(Supplementary Table 1).

Code availability
Code to carry out analyses is publicly available on Zenodo doi:10.5281/zenodo.3992642
and of Github https://github.com/jacopogrilli/lawsdiv.
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